

www.strategicjournals.com

Volume 5, Issue 4, Article 132

A TEST FOR WEAK FORM EFFICIENT MARKET HYPOTHESIS: EVIDENCE FROM THE NAIROBI SECURITIES EXCHANGE

Gichaiya, M. W., Mhuri, D. O., Muchina, S., Munyua, C. M., Weru, V. W., Kamau, N.

Vol. 5, Iss. 4, pp 2087 - 2123, November 22, 2018. www.strategicjournals.com, ©Strategic Journals

A TEST FOR WEAK FORM EFFICIENT MARKET HYPOTHESIS: EVIDENCE FROM THE NAIROBI SECURITIES EXCHANGE

Gichaiya, M. W.,^{1*} Mhuri, D. O.,² Muchina, S.,³ Munyua, C. M.,⁴ Weru, V. W.,⁵ Kamau, N.⁶

^{1*}Ph.D Candidate, Kirinyaga University [KYU], Nairobi, Kenya
 ^{2,4,5,6} Karatina University [KARU], Nairobi, Kenya
 ³ Ph.D, Karatina University [KARU], Nairobi, Kenya

Accepted: November 20, 2018

ABSTRACT

An efficient stock market should allow security prices to reflect all available information such that stock prices adjust quickly and on average, without bias, to new information. It is expected that no one can detect mispriced securities to make abnormal gains over a period of time and in this way, the market will be deemed to be efficient. Empirical studies have shown mixed results in regards to the efficiency of emerging stock markets rendering the debate on random walk hypothesis to be inconclusive. It is based on this backdrop that this study tested the weak form of market efficiency in the Nairobi Securities Exchange (NSE). It tested the null hypothesis that 42 selected stocks severally took a random walk over a 5 -year period. The selection of the stocks was based on continuous trading over the period of the study. The study used monthly average prices from January 2009 to December 2015 which were converted into natural log returns. Data analysis was carried out using serial correlation analysis and runs test analysis aided by Microsoft Excel and SPSS (version 20). The study plotted correlograms at 95% confidence intervals and further computed Ljung Box Q for 1 to 10 lags and Durbin Watson statistics for each selected stock. The study found inconsistency in the findings between runs test and serial correlation in that some of the companies that were found not to be efficient in one test were found to be efficient in another. However, it was generally found that at least 70% of the stocks were efficient in both tests which can be inferred to mean that NSE is largely efficient with some few outliers. This study recommended that a test of the weak form should be further conducted on the NSE utilizing the market indices (NSE 20 Share Index, All Share Index (NASI) and (NSE 25 Share Index) to confirm the above assertion that NSE is largely efficient.

Key Words: Efficient Market Hypothesis, Random Walk Model, Log Returns, Time Series, Technical and Fundamental Analysis

CITATION: Gichaiya, M. W., Mhuri, D. O., Muchina, S., Munyua, C. M., Weru, V. W., Kamau, N. (2018). A test for weak form efficient market hypothesis: Evidence from the Nairobi Securities Exchange. *The Strategic Journal of Business & Change Management*, 5(4), 2087 - 2123.

INTRODUCTION

An efficient market is one where the security prices reflect all the available information such that prices adjust quickly and, on average, without bias, to new information (Pandey, 2009). Stock prices may take a random walk over a period of time and therefore the prices vary, that is, operating in an irrational manner. According to Fama (1965), competition among the firms causes the effects of new information on the intrinsic values of the stocks to be reflected promptly in the stock market prices such that no one can detect mispriced securities to make abnormal gains.

Rational investors try to identify and invest in stocks that are undervalued and whose values are expected to increase in the future with a view to making an abnormal profit. They believe that with the aid of a variety of forecasting and valuation techniques, they can select stocks that will outperform the market (Degutis & Novickytė, 2014). The Efficient Market Hypothesis (EMH) asserts that none of these latter techniques are effective in predicting future stock prices in the market. This means that the advantage gained does not exceed the transaction and research costs incurred (Sewell, 2012).

The driving force behind price changes is the incorporation of new information in the stock prices. As a result, the current prices of securities reflect all available information at any given point in time. Consequently, there is no reason to believe that prices are too high or too low. Security prices adjust before an investor has time to trade on and profit from a new piece of information (Grzyb, 2007). According to (Pandey, 2009), there are three basic conditions under which the EMH will hold: a large number of competing, profit-maximizing participants analyze and value securities each independently from the others; new information regarding securities comes to the market in a random fashion; the competing investors attempt to adjust security prices rapidly to reflect the new information.

There are three forms of efficient market efficiency considering how information is reflected in market prices. These levels are: Weak form, Semi-Strong form and Strong form of efficient markets hypothesis. The weak form asserts that security prices reflect all past information about the price movements. It is therefore hard for investors to predict future security prices by analyzing historical prices and achieve a performance better than the stock market index. This is so because the capital market has no memory and the stock market has already incorporated past information about the security prices in the current market price (Pandey, 2009). The implication of the weak form of EMH is that the future rates of return of the stocks are independent of their past rates of return.

The semi strong form of EMH indicates that a market is efficient when the current security prices incorporate past history of prices and all publicly available information. Therefore, it incorporates the weak-form of EMH. The implication of this form is that a trader cannot benefit abnormally by trading on new information. However, a trader with private information can make superior profit in a weak and semi-strong form of EMH (Gichaiya & Ishmail, 2014).

The strong-form of EMH states that the market is efficient reflecting all information, that is, past, public and private information, therefore incorporating both the weak and semi-strong form of EMH. People with private or inside information have always been able to outperform the market (Gichaiya & Ishmail, 2014). Given the assumption that stock prices reflect all information (public as well as private) no investor would be able to profit above the average investor even if he was given new information.

The relevance of the EMH in Finance theory remains to be a live debate in the 21st century. According to Shiller & Radikoko (2014), efficient market hypothesis only explains half of the reality in the stock market. The EMH as it is only describes ideal trading conditions in a stock market which do not fully hold in reality. Even if markets are not perfect; there is empirical evidence that markets are efficient to a certain degree as prices do respond to new

- 2088 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

information. However, there is no certainty as to whether the markets respond to fundamental values of the companies (Degutis & Novickytė, 2014).

Stock markets in the developing countries especially tend to display high price volatility, and may therefore provide an opportunity for speculators to make abnormal gains which are inconsistent with EMH assumptions. The Nairobi Securities Exchange (NSE) for instance has displayed cases of abnormal price volatility which point to the possibility of underlying inefficiencies which can distort the true shareholder value in a stock (Maronga, Nyamosi, & Onsando, 2015). This paper tests the weak form of the efficient market hypothesis that past information concerning a stock market is not reflected in the current stock prices.

Statement of the Problem

The assertion of the weak-form of EMH that the market is efficient, reflecting all past market information is not without critic. This hypothesis assumes that the rates of return on the market should be independent of past rates of return. Contrary to the weak form of EMH, empirical studies reveal that there is presence of forecasting patterns within the existing stock markets indicating that the share return series does not follow a Random Walk Model (Gimba, 2007; Sewell, 2012; Shiller & Radikoko, 2014; Samitas, 2004). However, other empirical studies support the efficiency of the weak form. Grzyb (2007) found that a random walk was present in the Dow Jones Industrial Average Index signifying presence of a weak form of EMH. Nisar & Hanif (2012) conducted a run test based on KSE monthly, BSE weekly and monthly, DSE weekly and monthly indices and found evidence supporting weak form of EMH. Phiri (2015) also examined the weak form of EMH based on a linear framework stock indices in the Johannesburg Stock Exchange and established that the results offered support in favour of the weak form of EMH. These studies show that there is mixed results with regards to the efficiency of the weak form. Therefore, this study envisaged to unravel the mystery behind the two opposing contentions of the weak form of EMH based on returns of listed firms in the Nairobi Securities Exchange (NSE).

Hypotheses

This study investigated the weak form of stock market efficiency in the NSE. It investigated the null hypothesis that there is a random walk of the stocks in the NSE for the period of the study (Moustafa, 2004).

 H_0 : The stock returns in the NSE are random over the period of the study.

 H_1 : The stock returns in the NSE are not random over the period of the study.

METHODOLOGY

NSE is an emerging stock market which is thin and with low trading volumes compared to stock exchanges in developed countries. Therefore, this study utilized individual stock price returns rather than the stock market indices returns. This study used stock market data in the NSE from January 2009 to December 2013 which was a period of five years. According to Gimba (2007) and Moustafa (2004), five year period is adequate to determine whether there is a significant random walk within the stock market. The sample size for the study consisted of 42 listed companies in the NSE for the period of the study. The sample size was determined purposively solely based on continous trading over the period of the study.

Table 1: List firms listed in the Nairobi Securities Exchange

No.	Industry Sector	Name of Company	Symbols
1	Agricultural Sector	Eaagads Aims	EGAD
2		Kakuzi	KUKZ

- 2089 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

3		Kapchorua Tea Aims***	КАРС
4		Limuru Tea Aims***	LIMT
5		Sasini	SASN
6		Williamson Tea Aims	WTK
7		Rea Vipingo Plantation Ltd*	REA
8	Automobiles and Accessories	Car & Gen	CG
9		Marshalls***	MASH
10		CMC Holdings Limited***	СМС
11		Sameer (FIRE)	FIRE
12	Banking	Barclays	BBK
13		CFC Stanbic	CFC
14		Diamond Trust Bank Kenya	DTK
15		Equity Bank	EQTY
16		HF Group	HFCK
17		I&M Holdings***	IM
18		Kenya Commercial Bank	КСВ
19		National Bank of Kenya	NBK
20		NIC Bank	NICB
21		Standard Chartered Bank	SCBK
22		Cooperative Bank	COOP
23	Commercial	Atlas Dev. Gems**	AAI
24		Express (K) Aims	XPRS
25		Hutchings Biemer**	HBL
26		Kenya Airways	KQ
27		Longhorn Publishers Aims***	LKL
28		Nation Media	NMG
29		Standard Group	SGL
30		TPS Eastern Africa	TPSE
31		Uchumi***	UCHM
32		WPP Scangroup	SCAN
33	Construction & Allied	ARM Cement Ltd	ARM
34		Bamburi	BAMB
35		Crown Berger	BERG
36		EA Cables	CABL
37		East African Portland Cement***	EAPC
38	Energy & Petroleum	Kengen	KEGN
39		Kenolkobil	KENO
40		Kenya Power	KPLC
41		Total Kenya	TOTL
42		Umeme***	UMME
43	Insurance	British American***	BRIT

- 2090 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

44		CIC Insurance***	CIC
45		Jubilee	JUB
46		Kenya Re	KNRE
47		Liberty Kenya***	CFCI
48		Pan African	PAFR
49	Investment	Centum Investments	ICDC
50		Home Africa Gems***	HAFR
51		Kurwitu Ventures Ltd Gems**	KURV
52		Olympia	ОСН
53		Transcentury Aims***	TCL
54	Investment Services	Nairobi Securities Exchange**	NSE
55	Manufacturing & Allied	A. Baumann Aims**	BAUM
56		BOC Gases***	BOC
57		BAT Kenya	BAT
58		Carbacid***	CARB
59		East Africa Breweries Limited	EABL
60		Eveready EA	EVRD
61		Flame Tree Gems**	FTGH
62		K. Orchards Aims**	ORCH
63		Mumias	MSC
64		Unga	UNGA
65	Telecommunication & Technology	Safaricom	SCOM
66		AccessKenya Group***	ACCS

Source: Prepared by the author (2016)

* Rea Vipingo Plantation Ltd was delisted from the NSE in September, 2015 but was trading continuously over the period of the current study.

** These companies were not listed as of period of this study.

*** These companies were listed as of the period of the study but had not traded continuously.

The data used in this study primarily consisted of average monthly prices of the 42 sample companies chosen over the period of the study. The prices had been collected from the NSE offices in Nairobi covering the period commencing January 2009 to December 2013. Given that the data was picked from the primary trading floor, they were deemed to be reliable and accurate. Returns rather than prices were used because according to Sewell (2012), some statistical tests require a stationary variable. The monthly average price series were converted into returns using logarithmic transformation to get logarithmic returns which are deemed more tractible and are more likely to be normally distributed (Shiller & Radikoko, 2014; Gimba , 2007; Moustafa, 2004; Nisar & Hanif, 2012). According to Freund, Larrain, & Pagano (1997), logarithmic returns remove most of the linear dependency present and past returns in a series of data.

The following logarithmic transformation function was used:

$$R_t = \ln(\frac{P_t}{P_{t-1}})$$
(i)

Where

In is the natural logarithm

P_t is the average market price at time 't'

 $\mathsf{P}_{t\text{-}1}$ is the average market price at time 't-1' (previous period from time 't')

For this study, the statistical tests used were: serial correlation and run – tests.

This study used autocorrelation to test the null hypothesis that there is no serial correlation in the data series already transformed into log returns. Autocorrelation coefficent test measures the correlation between the current and lagged obsevations of the time series of stock returns (Kalsie & Kalra, 2015). It is given by the formulae below;

$$\rho_k = \frac{\sum_{t=1}^{n-k} (r_t - \bar{r})(r_{t+k} - \bar{r})}{\sum_{t=1}^{n} (r_t - \bar{r})^2} \dots \dots \dots \dots \dots (i)$$

where ρ_k is the serial correlation coefficient of stock returns of lag k

n is the number of observations

 r_t is the stock return over period t

 r_{t+k} is the stock return over the period t+k

 $ar{r}$ is the sample mean of stock returns

K is the lag of the period

The test aims to determine whether the serial correlation coefficients are statistically significant from zero. Statistically, the hypothesis of weak-form EMH should be rejected if stock returns (price changes) are serially correlated (ρ_k is significantly different from zero) (Gimba , 2007). To get the correlogram, a graph of ρ_k against k (Lag) was plotted (Kalsie & Kalra, 2015).

Given the following regression equation;

 $R_{i,t} = \alpha_i + \beta_i R_{i,t-1} + e_{i,t}$ (ii) Where;

 $R_{i,t}$ represents the log returns of stock 'i' at time 't'

 α_i represents the constant of the regression equation (ii)

 β_i is the beta coefficient which represents the measure of serial correlation of stock 'i'

 $R_{i,t-1}$ represents lagged returns, that is, log returns at time 't-1'

$e_{i,t}$ represents random error

The serial correlation following equation (ii) can also be measured by the null hypothesis that $\beta_i = 0$. To test for the serial correlation coefficient, two test statistics was used: Durbin Watson statistic can be used which is a test for the first order autocorrelation and Ljung-Box Q statistic which is asymptotically distributed like the chi-square (Moustafa, 2004).

Durbin Watson test was used to test that the residuals from the linear regression equation (ii) were independent. The assumption behind Durbin Watson test is that the errors in the regression model are generated by a first – order autoregression process observed at equally spaced time periods, that is;

$$e_{i,t} = \rho \; e_{i,t-1} + a_t$$
 (iii)

Since most regression problems involving time series data exhibit positive autocorrelation, hence, the hypotheses tested under the durbin watson test are;

$$H_0: \rho = 0$$

 $H_1: \rho > 0$

Where ρ is the coefficient of serial correlation;

Where;

 $e_i = y_i - \hat{y}_i$

 y_i and \hat{y}_i are the observed and predicted values respectively of the response variable for individual stock, 'i'.

d becomes smaller as the serial correlation increases. There are documented upper and lower critical values, d_U and d_L for different values of k (number of explanatory variable) and n (data size for each explanatory variable).

If $d < d_L$ reject $H_0: \rho = 0$

If
$$d > d_{II}$$
 do not reject $H_0: \rho = 0$

If $d_L < d < d_U$ test is inconclusive

For tests of negative correlation using Durbin Watson statistic, the statistic 4 - d is used. Thus the decision rules for $H_0: \rho = 0$ versus $H_0: \rho < 0$ are the same as those used in testing for positive autocorrelation.

Ljung-Box Q statistic was also used to test the joint hypothesis that all autocorrelations are simultaneously equal to zero (Gimba, 2007). According to Oprean (2012), instead of testing the randomness at each distinct lag, it tests the overall randomness based on a number of lags, and is therefore a portmanteau test. Ljung-Box Q statistic is given by

 $Q_{LB} = n (n+2) \sum_{t=1}^{i} \frac{p^2(t)}{n-t} \dots (v)$

Where ρ (*t*) is the estimated autocorrelation coefficients, and *t* is a given lag; *t* takes the values of 1 to 10 lags, and *n* denotes the sample size. If the calculated value of Q_{LB} exceeds the critical value of χ^2 with *i* -1 degrees of freedom, then at least one value of ρ (*t*) is statistically different from 0 at the specified significance level.

Runs test which is also known as Geary test (Vulić, 2010) is a non-parametric statistical approach which tests whether successive price changes are independent. It is a function of two parameters, which are the type of the run and the length. The run type means that stock prices can have positive (+), negative (-) or no change (0). A run is counted every time the price changes its sign. Under the null hypothesis that successive outcomes (share price changes) are independent, the total expected number of runs is distributed as normal with the following mean (Gimba , 2007; Vulić, 2010; Gupta & Gedam, 2014):

E (m) = $\frac{N(N+1)-\sum_{i=1}^{3}n_i^2}{N}$ Alternatively, E (m) = $\frac{2n_1n_2}{n_1+n_2}$ + 1......(vi)

For large observations (n > 30), the sampling distribution or the runs (m) is approximately normal and the standard error of the runs (m) is;

$$\sigma_m = \sqrt{\frac{\sum_{i=1}^{3} n_i^2 \left[\sum_{i=1}^{3} n_i^2 + N(N+1)\right] - 2N \sum_{i=1}^{3} n_i^3 - N^3}{N^2 (N-1)}}$$

Alternatively

Where $N = \sum_{i=1}^{3} n_i$ is the total number of observations (price changes or returns), n_i is the number of price changes (returns) in each category, n_1 and n_2 are the number of positive and negative price changes respectively and 'm' represents the observed number of runs.

The asymptotic Z – statistic which is approximately normal is given by

Z (m) = $\frac{m \pm 0.5 - E(m)}{\sigma_m}$ (viii)

Where 0.5 is the continuity adjustment in which the sign is negative (-0.5) if $m \ge E(m)$ and positive otherwise. Since dependence occurs among share returns when runs are too small or too large (Gimba , 2007), this test will therefore be a two-tailed test.

In order to test the weak form of EMH, the Runs Test is applied at 5% significance level where Z (5% twotailed) = \pm 1.96. The test for serial dependence is carried out by comparing the actual number of runs in the price series to the expected number runs. If the calculated |Z| value is greater than 1.96, we reject the null hypothesis and conclude that the analysed stock return in the NSE cannot be predicted.

#	Stock	Ν	М	E(m)	$\sigma(m)$	Z	p-value	Hypothesis testing where	
								Z (critical) =1.96 at Significance	
								level of 0.05	
1	EGAD	59	30	29.81	3.717	0.050	0.960	DO NOT REJECT HO	
2	KUKZ	59	24	29.47	3.673	1.491	0.136	DO NOT REJECT HO	
3	SASN	59	26	29.07	3.619	0.848	0.397	DO NOT REJECT HO	
4	WTK	59	28	30.49	3.806	0.655	0.513	DO NOT REJECT HO	
5	REA	59	24	29.81	3.717	1.564	0.118	DO NOT REJECT HO	
6	CG	59	26	29.47	3.673	0.946	0.344	DO NOT REJECT HO	

RESULTS AND DISCUSSIONS

Table 2: Runs Test Analysis

- 2093 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

7	FIRE	59	27	28.59	3.557	0.448	0.654	DO NOT REJECT HO
8	BBK	59	27	29.81	3.717	0.757	0.449	DO NOT REJECT HO
9	CFC*	59	22	30.49	3.806	2.231	0.026	REJECT HO
10	DTK*	59	14	26.76	3.317	3.848	0.000	REJECT HO
11	EQTY	59	27	30.49	3.806	0.917	0.359	DO NOT REJECT HO
12	HFCK*	59	18	29.47	3.673	3.124	0.002	REJECT HO
13	КСВ	59	25	30.08	3.753	1.355	0.175	DO NOT REJECT HO
14	NBK	59	26	29.47	3.673	0.946	0.344	DO NOT REJECT HO
15	NICB*	59	20	29.47	3.673	2.580	0.010	REJECT HO
16	SCBK	59	23	28.59	3.557	1.572	0.116	DO NOT REJECT HO
17	COOP*	59	21	30.29	3.779	2.458	0.014	REJECT HO
18	XPRS	59	24	28.05	3.486	1.162	0.245	DO NOT REJECT HO
19	KQ	59	22	29.07	3.619	1.953	0.051	DO NOT REJECT HO
20	NMG	59	28	28.05	3.486	0.015	0.988	DO NOT REJECT HO
21	SGL	59	25	28.59	3.557	1.010	0.312	DO NOT REJECT HO
22	TPSE	59	24	29.81	3.717	1.564	0.118	DO NOT REJECT HO
23	SCAN*	59	19	30.29	3.779	2.987	0.003	REJECT HO
24	ARM	59	24	27.44	3.406	1.010	0.312	DO NOT REJECT HO
25	BAMB	59	25	29.47	3.673	1.218	0.223	DO NOT REJECT HO
26	BERG*	59	20	29.07	3.619	2.505	0.012	REJECT HO
27	CABL	59	27	29.81	3.717	0.757	0.449	DO NOT REJECT HO
28	KEGN	59	27	30.49	3.806	0.917	0.359	DO NOT REJECT HO
29	KENO	59	26	30.49	3.806	1.180	0.238	DO NOT REJECT HO
30	KPLC	59	25	30.42	3.797	1.428	0.153	DO NOT REJECT HO
31	TOTL	59	23	29.81	3.717	1.833	0.067	DO NOT REJECT HO
32	JUB	59	28	30.29	3.779	0.605	0.545	DO NOT REJECT HO
33	KNRE	59	23	29.81	3.717	1.833	0.067	DO NOT REJECT HO
34	PAFR*	59	16	28.59	3.557	3.540	0.000	REJECT HO
35	ICDC*	59	20	28.59	3.557	2.416	0.016	REJECT HO
36	OCH	59	33	30.29	3.779	0.718	0.473	DO NOT REJECT HO
37	BAT	59	21	25.20	3.112	1.351	0.177	DO NOT REJECT HO
38	EABL*	59	17	28.59	3.557	3.259	0.001	REJECT HO
39	EVRD	59	26	29.81	3.717	1.026	0.305	DO NOT REJECT HO
40	MSC	59	23	29.07	3.619	1.677	0.094	DO NOT REJECT HO
41	UNGA	59	27	29.81	3.717	0.757	0.449	DO NOT REJECT HO
42	SCOM*	59	18	28.05	3.486	2.883	0.004	REJECT HO

Source: Prepared by the author (2016)

* These were the stocks that did not exhibit a weak form of market efficiency in the NSE in this study based on the Runs test analysis.

Serial Correlation Tests Analysis

Autocorrelation Function (correlogram) Test (ACF)

The graphs below showed the autocorrelation of the 42 companies against lag periods. This study used up to ten lag periods to check whether there was serial correlation in the time series of each of the 42 companies that were chosen for the study. The 95% confidence limits for the correlogram was plotted at $\pm 2/\sqrt{N}$ where N (observations) = 59. Therefore, the 95% confidence limits was $\pm 2/\sqrt{59} = \pm 0.260$. To see **Table 3:** *Kenva Airways (KO)*

if the ACFs were significant, we calculated the Ljung Box Q statistics for 1 to 10 lags which tests the joint null hypothesis that all autocorrelations across the lags were simultaneously equal to zero or that the returns were independently distributed. The Q – statistics were then compared to the critical value for the chi-square distribution with 'i' degrees of freedom at the 5 per cent level of significance where 'i' is the number of lags.

	- /			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.025	0.037459	3.841	DO NOT REJECT HO
2	0.112	0.823452	5.991	DO NOT REJECT HO
3	-0.056	1.023676	7.815	DO NOT REJECT HO
4	0.084	1.489593	9.488	DO NOT REJECT HO
5	0.018	1.511664	11.07	DO NOT REJECT HO
6	0.053	1.703173	12.592	DO NOT REJECT HO
7	0.034	1.784012	14.067	DO NOT REJECT HO
8	0.090	2.35596	15.507	DO NOT REJECT HO
9	0.067	2.682096	16.919	DO NOT REJECT HO
10	-0.144	4.203572	18.307	DO NOT REJECT HO

Figure 1: Correlogram for KQ

The correlogram above showed that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 4:** *ARM Cement Ltd (ARM)*

analysis, it was concluded that the Kenya Airways stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.008	0.004467	3.841	DO NOT REJECT HO
2	-0.055	0.192762	5.991	DO NOT REJECT HO
3	-0.034	0.268803	7.815	DO NOT REJECT HO
4	-0.047	0.415964	9.488	DO NOT REJECT HO

- 2095 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

5	0.052	0.596603	11.07	DO NOT REJECT HO
6	-0.010	0.603022	12.592	DO NOT REJECT HO
7	-0.022	0.63722	14.067	DO NOT REJECT HO
8	-0.088	1.187343	15.507	DO NOT REJECT HO
9	-0.075	1.595726	16.919	DO NOT REJECT HO
10	-0.097	2.289978	18.307	DO NOT REJECT HO

Figure 2: Correlogram for ARM

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 5: BAT Kenva (BAT)

analysis, it was concluded that the ARM stock prices were not serially correlated and thus they exhibited a weak form of EMH.

Tuble 3					
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.427	11.32855	3.841	REJECT HO	
2	0.137	12.51332	5.991	REJECT HO	
3	0.169	14.35438	7.815	REJECT HO	
4	0.149	15.80271	9.488	REJECT HO	
5	0.044	15.92989	11.07	REJECT HO	
6	-0.027	15.98041	12.592	REJECT HO	
7	-0.013	15.99294	14.067	REJECT HO	
8	-0.015	16.00805	15.507	REJECT HO	
9	-0.297	22.33603	16.919	REJECT HO	
10	-0.394	33.72659	18.307	REJECT HO	

Figure 3: Correlogram for BAT

The correlogram above showed that three of the autocorrelations among the 10 lags were significant

in that they were higher than critical values. Hence, based on the ACF analysis, it was concluded that the

BAT stock prices were serially correlated at 1, 9 and EMH.10 lags and thus they did not exhibit a weak form of

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.030	0.055	3.841	DO NOT REJECT HO
2	0.101	0.704	5.991	DO NOT REJECT HO
3	0.102	1.371	7.815	DO NOT REJECT HO
4	-0.028	1.424	9.488	DO NOT REJECT HO
5	-0.186	3.722	11.070	DO NOT REJECT HO
6	0.156	5.366	12.592	DO NOT REJECT HO
7	-0.018	5.389	14.067	DO NOT REJECT HO
8	-0.029	5.450	15.507	DO NOT REJECT HO
9	-0.010	5.457	16.919	DO NOT REJECT HO
10	0.033	5.536	18.307	DO NOT REJECT HO

Table 6: Barclays Bank of Kenya (BBK)

Figure 4: Correlogram for BBK

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the BBK stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Table 7: Car & Gen (CG)

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	-0.019	0.022	3.841	DO NOT REJECT HO
2	0.045	0.151	5.991	DO NOT REJECT HO
3	-0.094	0.713	7.815	DO NOT REJECT HO
4	-0.018	0.733	9.488	DO NOT REJECT HO
5	-0.115	1.608	11.070	DO NOT REJECT HO
6	-0.095	2.216	12.592	DO NOT REJECT HO
7	0.105	2.973	14.067	DO NOT REJECT HO
8	-0.037	3.071	15.507	DO NOT REJECT HO
9	0.197	5.874	16.919	DO NOT REJECT HO
10	-0.296	12.303	18.307	DO NOT REJECT HO

Figure 5: Correlogram for CG

The correlogram above shows that one of the autocorrelations among the 10 lags was significant in that they were higher than critical values. Hence, Table 8: CEC Stanhic (CEC)

based on the ACF analysis, it can be concluded that CG stock prices are serially correlated at 10 lags.

I able o							
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)			
1	0.040	0.101	3.841	DO NOT REJECT HO			
2	-0.349	7.795	5.991	REJECT HO			
3	0.019	7.818	7.815	REJECT HO			
4	0.025	7.860	9.488	DO NOT REJECT HO			
5	0.046	7.998	11.070	DO NOT REJECT HO			
6	-0.105	8.746	12.592	DO NOT REJECT HO			
7	-0.011	8.754	14.067	DO NOT REJECT HO			
8	0.011	8.762	15.507	DO NOT REJECT HO			
9	0.004	8.763	16.919	DO NOT REJECT HO			
10	0.008	8.767	18.307	DO NOT REJECT HO			

Figure 6: Correlogram for CFC

The correlogram above shows that one of the autocorrelations among the 10 lags was significant in that they were higher than critical values. Hence, **Table 9:** *Diamond Trust Bank of Kenva (DTK)*

based on the ACF analysis, it can be concluded that CFC stock prices are serially correlated at 2 lags.

Tuble 5.	Table 5. Damona Trast Bank of Kenya (DTK)					
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)		
1	-0.131	1.070	3.841	DO NOT REJECT HO		
2	0.025	1.109	5.991	DO NOT REJECT HO		
3	-0.017	1.127	7.815	DO NOT REJECT HO		
4	0.004	1.128	9.488	DO NOT REJECT HO		
5	0.161	2.859	11.070	DO NOT REJECT HO		
6	-0.012	2.869	12.592	DO NOT REJECT HO		

- 2098 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

7	0.024	2.908	14.067	DO NOT REJECT HO
8	-0.029	2.968	15.507	DO NOT REJECT HO
9	-0.016	2.987	16.919	DO NOT REJECT HO
10	-0.082	3.485	18.307	DO NOT REJECT HO

Figure 7: Correlogram for DTK

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 10**: *JUBILEE (JUB)*

analysis, it can be concluded that the DTK stock prices are not serially correlated and thus they exhibit a weak form of EMH.

	- 1 - 7			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.143	1.276	3.841	DO NOT REJECT HO
2	-0.084	1.721	5.991	DO NOT REJECT HO
3	-0.093	2.281	7.815	DO NOT REJECT HO
4	-0.077	2.668	9.488	DO NOT REJECT HO
5	-0.009	2.673	11.070	DO NOT REJECT HO
6	0.013	2.685	12.592	DO NOT REJECT HO
7	0.089	3.237	14.067	DO NOT REJECT HO
8	0.069	3.574	15.507	DO NOT REJECT HO
9	-0.031	3.645	16.919	DO NOT REJECT HO
10	-0.069	3.997	18.307	DO NOT REJECT HO

Figure 8: Correlogram for JUB

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 11:** *Kenya Commercial Bank (KCB)*

analysis, it can be concluded that the JUB stock prices are not serially correlated and thus they exhibit a weak form of EMH

- 2099 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	-0.233	3.358	3.841	DO NOT REJECT HO
2	0.112	4.152	5.991	DO NOT REJECT HO
3	-0.153	5.653	7.815	DO NOT REJECT HO
4	-0.044	5.779	9.488	DO NOT REJECT HO
5	-0.001	5.779	11.070	DO NOT REJECT HO
6	-0.075	6.163	12.592	DO NOT REJECT HO
7	0.068	6.488	14.067	DO NOT REJECT HO
8	0.041	6.604	15.507	DO NOT REJECT HO
9	0.004	6.605	16.919	DO NOT REJECT HO
10	-0.045	6.751	18.307	DO NOT REJECT HO

Figure 9: Correlogram for KCB

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 12: Mumias Sugar Company (MSC)

analysis, it can be concluded that the KCB stock prices are not serially correlated and thus they exhibit a weak form of EMH

Table 12. Mumius Sugur Compuny (MSC)					
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.306	5.802	3.841	REJECT HO	
2	0.095	6.372	5.991	REJECT HO	
3	0.209	9.179	7.815	REJECT HO	
4	-0.095	9.772	9.488	REJECT HO	
5	-0.128	10.871	11.070	DO NOT REJECT HO	
6	0.045	11.009	12.592	DO NOT REJECT HO	
7	-0.002	11.009	14.067	DO NOT REJECT HO	
8	0.045	11.150	15.507	DO NOT REJECT HO	
9	0.148	12.731	16.919	DO NOT REJECT HO	
10	-0.023	12.768	18.307	DO NOT REJECT HO	

- 2100 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Figure 10: Correlogram for MSC

The correlogram above shows that not all the autocorrelations among the 10 lags were significant in that one was beyond critical values. Hence, based **Table 13:** National Bank of Kenya (NBK)

on the ACF analysis, it can be concluded that the MSC stock prices are not serially correlated at lag 1.

Tuble 1	Table 19. National Bank of Kenya (HBK)					
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)		
1	0.149	1.370	3.841	DO NOT REJECT HO		
2	-0.011	1.377	5.991	DO NOT REJECT HO		
3	-0.070	1.688	7.815	DO NOT REJECT HO		
4	-0.060	1.927	9.488	DO NOT REJECT HO		
5	-0.052	2.104	11.070	DO NOT REJECT HO		
6	-0.054	2.304	12.592	DO NOT REJECT HO		
7	0.112	3.173	14.067	DO NOT REJECT HO		
8	0.156	4.897	15.507	DO NOT REJECT HO		
9	0.022	4.932	16.919	DO NOT REJECT HO		
10	0.136	6.291	18.307	DO NOT REJECT HO		

Figure 11: Correlogram for NBK

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 14: NIC Bank (NICB)

analysis, it can be concluded that the NBK stock prices are not serially correlated and thus they exhibit a weak form of EMH

	• •			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.109	0.742	3.841	DO NOT REJECT HO
2	-0.156	2.277	5.991	DO NOT REJECT HO
3	-0.076	2.653	7.815	DO NOT REJECT HO
4	0.044	2.782	9.488	DO NOT REJECT HO
5	0.060	3.026	11.070	DO NOT REJECT HO

- 2101 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

6	0.072	3.376	12.592	DO NOT REJECT HO
7	-0.031	3.442	14.067	DO NOT REJECT HO
8	0.096	4.090	15.507	DO NOT REJECT HO
9	0.060	4.351	16.919	DO NOT REJECT HO
10	-0.124	5.474	18.307	DO NOT REJECT HO

Figure 12: Correlogram for NICB

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 15: Nation Media Group (NMG)

analysis, it can be concluded that the NICB stock prices are not serially correlated and thus they exhibit a weak form of EMH

		,			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.125	0.970	3.841	DO NOT REJECT HO	
2	0.089	1.466	5.991	DO NOT REJECT HO	
3	-0.021	1.496	7.815	DO NOT REJECT HO	
4	-0.004	1.497	9.488	DO NOT REJECT HO	
5	0.168	3.388	11.070	DO NOT REJECT HO	
6	0.093	3.982	12.592	DO NOT REJECT HO	
7	0.151	5.559	14.067	DO NOT REJECT HO	
8	-0.137	6.891	15.507	DO NOT REJECT HO	
9	-0.133	8.156	16.919	DO NOT REJECT HO	
10	-0.022	8.192	18.307	DO NOT REJECT HO	

Figure 13: Correlogram for NMG

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the NMG stock prices are not serially correlated and thus they exhibit a weak form of EMH

- 2102 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

, , , ,			
Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
-0.103	0.659	3.841	DO NOT REJECT HO
0.153	2.146	5.991	DO NOT REJECT HO
-0.146	3.510	7.815	DO NOT REJECT HO
-0.046	3.646	9.488	DO NOT REJECT HO
0.084	4.117	11.070	DO NOT REJECT HO
0.021	4.146	12.592	DO NOT REJECT HO
0.039	4.253	14.067	DO NOT REJECT HO
-0.120	5.269	15.507	DO NOT REJECT HO
0.027	5.320	16.919	DO NOT REJECT HO
-0.072	5.705	18.307	DO NOT REJECT HO
	Autocorrelation -0.103 0.153 -0.146 -0.046 0.084 0.021 0.039 -0.120 0.027 -0.072	AutocorrelationQ-stat-0.1030.6590.1532.146-0.1463.510-0.0463.6460.0844.1170.0214.1460.0394.253-0.1205.2690.0275.320-0.0725.705	AutocorrelationQ-statQ-Crit-0.1030.6593.8410.1532.1465.991-0.1463.5107.815-0.0463.6469.4880.0844.11711.0700.0214.14612.5920.0394.25314.067-0.1205.26915.5070.0275.32016.919-0.0725.70518.307

Figure 14: Correlogram for OCH

Table 16: Olympia (OCH)

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 17:** *REA Vipingo (REA)*

analysis, it can be concluded that the OCH stock prices are not serially correlated and thus they exhibit a weak form of EMH

	1 3 1 7			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.109	0.740	3.841	DO NOT REJECT HO
2	-0.251	4.731	5.991	DO NOT REJECT HO
3	-0.137	5.942	7.815	DO NOT REJECT HO
4	0.083	6.397	9.488	DO NOT REJECT HO
5	0.017	6.416	11.070	DO NOT REJECT HO
6	-0.059	6.652	12.592	DO NOT REJECT HO
7	-0.140	8.014	14.067	DO NOT REJECT HO
8	0.011	8.023	15.507	DO NOT REJECT HO
9	0.009	8.028	16.919	DO NOT REJECT HO
10	0.091	8.630	18.307	DO NOT REJECT HO

- 2103 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Figure 15: Correlogram for REA

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 18: Standard Group (SGL)

analysis, it can be concluded that the REA stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.110	0.747	3.841	DO NOT REJECT HO
2	0.004	0.749	5.991	DO NOT REJECT HO
3	-0.009	0.753	7.815	DO NOT REJECT HO
4	-0.134	1.935	9.488	DO NOT REJECT HO
5	0.010	1.942	11.070	DO NOT REJECT HO
6	0.132	3.126	12.592	DO NOT REJECT HO
7	0.014	3.140	14.067	DO NOT REJECT HO
8	0.018	3.162	15.507	DO NOT REJECT HO
9	0.128	4.345	16.919	DO NOT REJECT HO
10	-0.021	4.379	18.307	DO NOT REJECT HO

Figure 16: Correlogram for SGL

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the SGL stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Table 19: Williamsons Tea AIMS (WTK)					
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	-0.056	0.198	3.841	DO NOT REJECT HO	
2	-0.200	2.730	5.991	DO NOT REJECT HO	
3	0.226	6.022	7.815	DO NOT REJECT HO	
4	0.105	6.746	9.488	DO NOT REJECT HO	

- 2104 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

5	0.051	6.921	11.070	DO NOT REJECT HO
6	-0.125	7.981	12.592	DO NOT REJECT HO
7	0.052	8.167	14.067	DO NOT REJECT HO
8	0.065	8.465	15.507	DO NOT REJECT HO
9	-0.126	9.606	16.919	DO NOT REJECT HO
10	0.071	9.979	18.307	DO NOT REJECT HO

Figure 17: Correlogram for WTK

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 20:** *Bamburi Cement (BAMB)*

analysis, it can be concluded that the WTK stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.258	4.140	3.841	REJECT HO
2	-0.078	4.519	5.991	DO NOT REJECT HO
3	-0.073	4.861	7.815	DO NOT REJECT HO
4	0.083	5.308	9.488	DO NOT REJECT HO
5	-0.032	5.378	11.070	DO NOT REJECT HO
6	-0.088	5.906	12.592	DO NOT REJECT HO
7	-0.053	6.103	14.067	DO NOT REJECT HO
8	0.129	7.278	15.507	DO NOT REJECT HO
9	0.045	7.424	16.919	DO NOT REJECT HO
10	0.076	7.849	18.307	DO NOT REJECT HO

Figure 18: Correlogram for BAMB

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the BAMB stock prices are not serially correlated and thus they exhibit a weak form of EMH.

- 2105 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.229	3.253	3.841	DO NOT REJECT HO
2	-0.207	5.968	5.991	DO NOT REJECT HO
3	-0.187	8.204	7.815	REJECT HO
4	0.023	8.240	9.488	DO NOT REJECT HO
5	-0.002	8.240	11.070	DO NOT REJECT HO
6	-0.218	11.472	12.592	DO NOT REJECT HO
7	0.128	12.604	14.067	DO NOT REJECT HO
8	0.108	13.426	15.507	DO NOT REJECT HO
9	0.037	13.524	16.919	DO NOT REJECT HO
10	0.067	13.852	18.307	DO NOT REJECT HO

Table 21: Crown Berger (BERG)

Figure 19: Correlogram for BERG

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 22: EA Cables (CABL)

analysis, it can be concluded that the BERG stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.139	1.196	3.841	DO NOT REJECT HO	
2	-0.179	3.222	5.991	DO NOT REJECT HO	
3	-0.024	3.258	7.815	DO NOT REJECT HO	
4	-0.060	3.495	9.488	DO NOT REJECT HO	
5	-0.033	3.568	11.070	DO NOT REJECT HO	
6	0.042	3.688	12.592	DO NOT REJECT HO	
7	0.065	3.977	14.067	DO NOT REJECT HO	
8	0.145	5.452	15.507	DO NOT REJECT HO	
9	0.156	7.193	16.919	DO NOT REJECT HO	
10	-0.073	7.588	18.307	DO NOT REJECT HO	

Figure 20: Correlogram for CABL

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 23: Cooperative Bank (COOP)

analysis, it can be concluded that the CABL stock prices are not serially correlated and thus they exhibit a weak form of EMH.

		• /			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.260	4.181	3.841	REJECT HO	
2	0.054	4.368	5.991	DO NOT REJECT HO	
3	-0.133	5.497	7.815	DO NOT REJECT HO	
4	-0.137	6.717	9.488	DO NOT REJECT HO	
5	0.091	7.265	11.070	DO NOT REJECT HO	
6	0.152	8.839	12.592	DO NOT REJECT HO	
7	0.094	9.454	14.067	DO NOT REJECT HO	
8	-0.049	9.621	15.507	DO NOT REJECT HO	
9	-0.098	10.316	16.919	DO NOT REJECT HO	
10	-0.038	10.423	18.307	DO NOT REJECT HO	

Figure 21: Correlogram for COOP

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 24:** *East Africa Breweries (EABL)*

analysis, it can be concluded that the COOP stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.144	1.288	3.841	DO NOT REJECT HO
2	-0.009	1.294	5.991	DO NOT REJECT HO
3	-0.112	2.101	7.815	DO NOT REJECT HO
4	-0.148	3.527	9.488	DO NOT REJECT HO

- 2107 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

5	0.008	3.532	11.070	DO NOT REJECT HO
6	-0.083	4.001	12.592	DO NOT REJECT HO
7	0.061	4.260	14.067	DO NOT REJECT HO
8	0.003	4.261	15.507	DO NOT REJECT HO
9	-0.038	4.366	16.919	DO NOT REJECT HO
10	0.102	5.125	18.307	DO NOT REJECT HO

Figure 22: Correlogram for EABL

Table 25: Eagaads Aims (EGADS)

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the EABL stock prices are not serially correlated and thus they exhibit a weak form of EMH.

	5 ()			
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.075	0.351	3.841	DO NOT REJECT HO
2	-0.067	0.632	5.991	DO NOT REJECT HO
3	-0.075	0.992	7.815	DO NOT REJECT HO
4	-0.064	1.263	9.488	DO NOT REJECT HO
5	-0.045	1.396	11.070	DO NOT REJECT HO
6	-0.052	1.582	12.592	DO NOT REJECT HO
7	0.044	1.714	14.067	DO NOT REJECT HO
8	-0.022	1.748	15.507	DO NOT REJECT HO
9	-0.149	3.339	16.919	DO NOT REJECT HO
10	0.085	3.871	18.307	DO NOT REJECT HO

Figure 23: Correlogram for EGADS

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the EGADS stock prices are not serially correlated and thus they exhibit a weak form of EMH.

- 2108 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.258	4.132	3.841	REJECT HO
2	0.042	4.246	5.991	DO NOT REJECT HO
3	-0.034	4.321	7.815	DO NOT REJECT HO
4	0.024	4.360	9.488	DO NOT REJECT HO
5	0.064	4.634	11.070	DO NOT REJECT HO
6	0.038	4.733	12.592	DO NOT REJECT HO
7	0.013	4.746	14.067	DO NOT REJECT HO
8	0.005	4.747	15.507	DO NOT REJECT HO
9	-0.070	5.097	16.919	DO NOT REJECT HO
10	-0.006	5.100	18.307	DO NOT REJECT HO

Table 26: Equity Bank (EQTY)

Figure 24: Correlogram for EQTY

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the EQTY stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Table 27	Table 27: Eveready EA (EVRD)				
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.024	0.036	3.841	DO NOT REJECT HO	
2	0.185	2.203	5.991	DO NOT REJECT HO	
3	0.108	2.951	7.815	DO NOT REJECT HO	
4	0.267	7.607	9.488	DO NOT REJECT HO	
5	-0.047	7.755	11.070	DO NOT REJECT HO	
6	-0.020	7.781	12.592	DO NOT REJECT HO	
7	0.025	7.823	14.067	DO NOT REJECT HO	
8	0.074	8.206	15.507	DO NOT REJECT HO	
9	-0.116	9.176	16.919	DO NOT REJECT HO	
10	-0.081	9.659	18.307	DO NOT REJECT HO	

Figure 25: Correlogram for EVRD

The correlogram above shows that all the autocorrelations among the 10 lags except the 4th lag **Table 28:** Sameer (FIRE)

were not significant in that they were within the upper and lower critical values.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.386	9.255	3.841	REJECT HO	
2	-0.033	9.323	5.991	REJECT HO	
3	0.009	9.328	7.815	REJECT HO	
4	0.075	9.696	9.488	REJECT HO	
5	0.029	9.753	11.070	DO NOT REJECT HO	
6	-0.045	9.888	12.592	DO NOT REJECT HO	
7	-0.030	9.949	14.067	DO NOT REJECT HO	
8	-0.061	10.208	15.507	DO NOT REJECT HO	
9	-0.058	10.453	16.919	DO NOT REJECT HO	
10	0.080	10.918	18.307	DO NOT REJECT HO	

Figure 26: Correlogram for FIRE

The correlogram above shows that all the autocorrelations among the 10 lags except the 1st lag **Table 29:** *HE Group (HECK)*

were not significant in that they were within the upper and lower critical values.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.346	7.419	3.841	REJECT HO
2	0.097	8.008	5.991	REJECT HO
3	0.128	9.067	7.815	REJECT HO
4	0.066	9.350	9.488	DO NOT REJECT HO
5	0.155	10.947	11.070	DO NOT REJECT HO
6	-0.066	11.240	12.592	DO NOT REJECT HO
7	-0.037	11.335	14.067	DO NOT REJECT HO
8	0.154	13.014	15.507	DO NOT REJECT HO

- 2110 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

9	0.123	14.105	16.919	DO NOT REJECT HO
10	-0.082	14.596	18.307	DO NOT REJECT HO

Figure 27: Correlogram for HFCK

The correlogram above shows that all the autocorrelations among the 10 lags except the 1st lag **Table 30**: *Centum (ICDC)*

were not significant in that they were within the upper and lower critical values.

	Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
	1	0.405	10.199	3.841	REJECT HO
	2	0.096	10.779	5.991	REJECT HO
	3	-0.168	12.603	7.815	REJECT HO
	4	-0.169	14.476	9.488	REJECT HO
	5	0.062	14.735	11.070	REJECT HO
	6	0.104	15.473	12.592	REJECT HO
	7	0.117	16.424	14.067	REJECT HO
	8	-0.026	16.473	15.507	REJECT HO
	9	0.021	16.504	16.919	DO NOT REJECT HO
	10	0.047	16.669	18.307	DO NOT REJECT HO

Figure 28: Correlogram for ICDC

The correlogram above shows that all the autocorrelations among the 10 lags except the 1st lag **Table 31:** *KenGen (KEGN)*

were not significant in that they were within the upper and lower critical values.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.227	3.192	3.841	DO NOT REJECT HO
2	0.188	5.416	5.991	DO NOT REJECT HO
3	0.034	5.489	7.815	DO NOT REJECT HO
4	-0.065	5.767	9.488	DO NOT REJECT HO
5	0.192	8.231	11.070	DO NOT REJECT HO

- 2111 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

6	0.176	10.327	12.592	DO NOT REJECT HO
7	0.171	12.361	14.067	DO NOT REJECT HO
8	-0.053	12.563	15.507	DO NOT REJECT HO
9	0.020	12.593	16.919	DO NOT REJECT HO
10	-0.158	14.415	18.307	DO NOT REJECT HO

Figure 29: Correlogram for KEGN

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 32: Kenol Kobil (KENO)**

analysis, it can be concluded that the KEGN stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	-0.102	0.645	3.841	DO NOT REJECT HO
2	-0.031	0.706	5.991	DO NOT REJECT HO
3	-0.024	0.744	7.815	DO NOT REJECT HO
4	-0.102	1.422	9.488	DO NOT REJECT HO
5	-0.082	1.869	11.070	DO NOT REJECT HO
6	0.015	1.885	12.592	DO NOT REJECT HO
7	-0.020	1.912	14.067	DO NOT REJECT HO
8	0.018	1.934	15.507	DO NOT REJECT HO
9	-0.003	1.934	16.919	DO NOT REJECT HO
10	0.037	2.034	18.307	DO NOT REJECT HO

Figure 30: Correlogram for KENO

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and

lower critical values. Hence, based on the ACF analysis, it can be concluded that the KENO stock

- 2112 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.234	3.398	3.841	DO NOT REJECT HO	
2	-0.156	4.943	5.991	DO NOT REJECT HO	
3	-0.168	6.760	7.815	DO NOT REJECT HO	
4	0.013	6.770	9.488	DO NOT REJECT HO	
5	0.018	6.792	11.070	DO NOT REJECT HO	
6	0.002	6.792	12.592	DO NOT REJECT HO	
7	0.032	6.865	14.067	DO NOT REJECT HO	
8	0.050	7.045	15.507	DO NOT REJECT HO	
9	0.080	7.510	16.919	DO NOT REJECT HO	
10	0.039	7.624	18.307	DO NOT REJECT HO	

a weak form of EMH.

Figure 31: Correlogram for KNRE

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the KNRE stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	-0.141	1.229	3.841	DO NOT REJECT HO
2	-0.105	1.925	5.991	DO NOT REJECT HO
3	-0.030	1.984	7.815	DO NOT REJECT HO
4	0.008	1.988	9.488	DO NOT REJECT HO
5	-0.007	1.991	11.070	DO NOT REJECT HO
6	-0.026	2.039	12.592	DO NOT REJECT HO
7	-0.023	2.074	14.067	DO NOT REJECT HO
8	0.006	2.076	15.507	DO NOT REJECT HO
9	-0.049	2.250	16.919	DO NOT REJECT HO
10	0.032	2.328	18.307	DO NOT REJECT HO

Figure 32: Correlogram for KPLC

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 35: KAKUZI (KUKZ)

analysis, it can be concluded that the KPLC stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.184	2.098	3.841	DO NOT REJECT HO	
2	-0.041	2.205	5.991	DO NOT REJECT HO	
3	-0.054	2.392	7.815	DO NOT REJECT HO	
4	-0.117	3.288	9.488	DO NOT REJECT HO	
5	-0.013	3.298	11.070	DO NOT REJECT HO	
6	0.008	3.303	12.592	DO NOT REJECT HO	
7	-0.038	3.402	14.067	DO NOT REJECT HO	
8	0.214	6.638	15.507	DO NOT REJECT HO	
9	0.104	7.420	16.919	DO NOT REJECT HO	
10	0.048	7.592	18.307	DO NOT REJECT HO	

Figure 33: Correlogram for KUKZ

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 36:** *Pan African (PAFR)*

analysis, it can be concluded that the KUKZ stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.385	9.188	3.841	REJECT HO
2	0.261	13.482	5.991	REJECT HO
3	0.005	13.483	7.815	REJECT HO
4	-0.061	13.729	9.488	REJECT HO
5	-0.031	13.793	11.070	REJECT HO

- 2114 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

6	0.077	14.200	12.592	REJECT HO
7	0.033	14.276	14.067	REJECT HO
8	0.024	14.316	15.507	DO NOT REJECT HO
9	-0.163	16.222	16.919	DO NOT REJECT HO
10	-0.128	17.424	18.307	DO NOT REJECT HO

Figure 34: Correlogram for PAFR

The correlogram above shows that all there was autocorrelations in the 1^{st} and 2^{nd} lags.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.089	0.495	3.841	DO NOT REJECT HO
2	-0.076	0.860	5.991	DO NOT REJECT HO
3	-0.098	1.481	7.815	DO NOT REJECT HO
4	0.087	1.982	9.488	DO NOT REJECT HO
5	0.080	2.408	11.070	DO NOT REJECT HO
6	-0.170	4.360	12.592	DO NOT REJECT HO
7	0.168	6.322	14.067	DO NOT REJECT HO
8	-0.082	6.801	15.507	DO NOT REJECT HO
9	-0.116	7.764	16.919	DO NOT REJECT HO
10	0.010	7.772	18.307	DO NOT REJECT HO

Table 37: Sasini (SASN)

Figure 35: Correlogram for SASN

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 38:** *WPP Scangroup (SCAN)*

analysis, it can be concluded that the SASN stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)	
1	0.205	2.608	3.841	DO NOT REJECT HO	
2	0.038	2.701	5.991	DO NOT REJECT HO	

- 2115 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

3	0.199	5.255	7.815	DO NOT REJECT HO
4	0.053	5.438	9.488	DO NOT REJECT HO
5	-0.086	5.928	11.070	DO NOT REJECT HO
6	0.019	5.954	12.592	DO NOT REJECT HO
7	0.009	5.960	14.067	DO NOT REJECT HO
8	-0.060	6.215	15.507	DO NOT REJECT HO
9	-0.129	7.405	16.919	DO NOT REJECT HO
10	-0.146	8.979	18.307	DO NOT REJECT HO

Figure 36: Correlogram for SCAN

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 39: Standard Chartered Bank (SCBK)

analysis, it can be concluded that the SCAN stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Tuble 3.	and 55. Standard Chartered Bank (Sebky							
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)				
1	-0.326	6.607	3.841	REJECT HO				
2	0.170	8.438	5.991	REJECT HO				
3	0.138	9.667	7.815	REJECT HO				
4	0.012	9.677	9.488	REJECT HO				
5	0.083	10.141	11.070	DO NOT REJECT HO				
6	-0.026	10.188	12.592	DO NOT REJECT HO				
7	-0.007	10.191	14.067	DO NOT REJECT HO				
8	0.058	10.432	15.507	DO NOT REJECT HO				
9	-0.037	10.530	16.919	DO NOT REJECT HO				
10	-0.011	10.538	18.307	DO NOT REJECT HO				

Figure 37: Correlogram for SCBK

The correlogram above shows that all the autocorrelations among the 10 lags except the 1st lag

were not significant in that they were within the upper and lower critical values.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.342	7.257	3.841	REJECT HO
2	0.300	12.930	5.991	REJECT HO
3	0.189	15.214	7.815	REJECT HO
4	0.210	18.113	9.488	REJECT HO
5	0.137	19.359	11.070	REJECT HO
6	0.408	30.675	12.592	REJECT HO
7	0.119	31.662	14.067	REJECT HO
8	-0.018	31.684	15.507	REJECT HO
9	0.048	31.848	16.919	REJECT HO
10	-0.038	31.953	18.307	REJECT HO

Table 40: Safaricom (SCOM)

Figure 38: Correlogram for SCOM

The correlogram above shows that all the autocorrelations among the 10 lags except for the 1^{st} , Table 41: Total (TOT)

2nd and 6th lag were not significant in that they were within the upper and lower critical values.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.201	2.506	3.841	DO NOT REJECT HO
2	0.072	2.831	5.991	DO NOT REJECT HO
3	-0.020	2.858	7.815	DO NOT REJECT HO
4	-0.001	2.858	9.488	DO NOT REJECT HO
5	0.038	2.956	11.070	DO NOT REJECT HO
6	0.222	6.294	12.592	DO NOT REJECT HO
7	0.074	6.676	14.067	DO NOT REJECT HO
8	0.007	6.679	15.507	DO NOT REJECT HO
9	0.032	6.752	16.919	DO NOT REJECT HO
10	-0.012	6.763	18.307	DO NOT REJECT HO

^{- 2117 -} The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Figure 39: Correlogram for TOTL

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF **Table 42:** *TPS Fastern Africa (TPSF)*

analysis, it can be concluded that the TOTL stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	-0.052	0.171	3.841	DO NOT REJECT HO
2	-0.066	0.446	5.991	DO NOT REJECT HO
3	-0.099	1.075	7.815	DO NOT REJECT HO
4	-0.149	2.521	9.488	DO NOT REJECT HO
5	0.047	2.671	11.070	DO NOT REJECT HO
6	0.063	2.942	12.592	DO NOT REJECT HO
7	-0.024	2.982	14.067	DO NOT REJECT HO
8	0.097	3.650	15.507	DO NOT REJECT HO
9	0.039	3.758	16.919	DO NOT REJECT HO
10	-0.012	3.768	18.307	DO NOT REJECT HO

Figure 40: Correlogram for TPSE

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF

analysis, it can be concluded that the TPSE stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Table 43: UNGA

Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)
1	0.155	1.486	3.841	DO NOT REJECT HO
2	-0.108	2.217	5.991	DO NOT REJECT HO
3	-0.091	2.746	7.815	DO NOT REJECT HO
4	-0.217	5.819	9.488	DO NOT REJECT HO
5	-0.111	6.647	11.070	DO NOT REJECT HO
6	0.040	6.755	12.592	DO NOT REJECT HO
7	-0.036	6.843	14.067	DO NOT REJECT HO
8	0.187	9.319	15.507	DO NOT REJECT HO
9	-0.032	9.392	16.919	DO NOT REJECT HO
10	0.036	9.489	18.307	DO NOT REJECT HO

- 2118 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

Figure 41: Correlogram for UNGA

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF Table 44: Express (K) Aims (XPRS)

analysis, it can be concluded that the UNGA stock prices are not serially correlated and thus they exhibit a weak form of EMH.

יטאר באד אין							
Lag	Autocorrelation	Q-stat	Q-Crit	Conclusion (Q-Stat)			
1	0.209	2.713	3.841	DO NOT REJECT HO			
2	0.035	2.789	5.991	DO NOT REJECT HO			
3	-0.087	3.274	7.815	DO NOT REJECT HO			
4	-0.059	3.505	9.488	DO NOT REJECT HO			
5	0.160	5.213	11.070	DO NOT REJECT HO			
6	0.163	7.021	12.592	DO NOT REJECT HO			
7	-0.067	7.334	14.067	DO NOT REJECT HO			
8	0.013	7.345	15.507	DO NOT REJECT HO			
9	0.036	7.437	16.919	DO NOT REJECT HO			
10	-0.082	7.933	18.307	DO NOT REJECT HO			

Figure 42: Correlogram for XPRS

The correlogram above shows that all the autocorrelations among the 10 lags were not significant in that they were within the upper and lower critical values. Hence, based on the ACF analysis, it can be concluded that the XPRS stock prices are not serially correlated and thus they exhibit a weak form of EMH.

Durbin Watson Test

To conduct Durbin Watson test, we used SPSS software (version 20) to regress the current returns against one-month lagged returns to get the Durbin Watson statistic. The assumption behind Durbin Watson test is that the errors in the regression model are generated by a first – order autoregression process observed at equally spaced time periods, that is;

 $e_{i,t} = \rho \ e_{i,t-1} + a_t$ (iii) d (Durbin Watson Statistic) = $\frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$ (iv) Where;

 $e_i = y_i - \hat{y}_i$

 y_i and \hat{y}_i are the observed and predicted values respectively of the response variable for individual stock, 'i'.

d becomes smaller as the serial correlation increases. There are documented upper and lower critical values, d_U and d_L for different values of k (number of explanatory variable) and n (data size for each explanatory variable).

General Decision Criteria;

If d=2, no serial correlation. If d<2, there is positive serial correlation and if d>2, there is negative serial correlation.

Decision Criteria for Positive serial correlation;

If $d < d_L \operatorname{reject} H_0$: $\rho = 0$ (presence of serial correlation)

If $d > d_U \text{ do not reject } H_0 : \rho = 0$ (no serial correlation)

If $d_L < d < d_U$ test is inconclusive

In our case; $d_L = 1.53$; $d_U = 1.60$ based on Durbin Watson table (5% S.L, n=58)

For tests of negative correlation using Durbin Watson statistic, the statistic 4 - d is used. Thus the decision rules for $H_0: \rho = 0$ versus $H_0: \rho < 0$ are the same as those used in testing for positive autocorrelation.

Decision Criteria for negative serial correlation;

Test H_{ρ} : $\rho = 0$ against H_{A} : $\rho < 0$ (There is negative Serial Correlation)

Compute 4 - d

If $4 - d \leq d_{L}$, Reject the null

If $4 - d \ge d_{u}$, do not reject the null,

If $d_{L} < 4 - d < d_{U}$, the test is inconclusive

#	Stock	d	4-d	d⊾	dυ	Conclusion
1	EGAD	1.988		1.52	1.60	Do not reject H0; No significant positive serial correlation
2	KUKZ	1.983		1.52	1.60	Do not reject H0; No significant positive serial correlation
3	SASN	1.987		1.52	1.60	Do not reject H0; No significant positive serial correlation
4	WTK	2.026	1.974	1.52	1.60	Do not reject H0; No significant negative serial correlation
5	REA	1.631		1.52	1.60	Do not reject H0; No significant positive serial correlation
6	CG	1.981		1.52	1.60	Do not reject H0; No significant positive serial correlation
7	FIRE	1.781		1.52	1.60	Do not reject H0; No significant positive serial correlation
8	BBK	2.015	1.985	1.52	1.60	Do not reject H0; No significant negative serial correlation
9	CFC	1.974		1.52	1.60	Do not reject H0; No significant positive serial correlation
10	DTK	2.067	1.933	1.52	1.60	Do not reject H0; No significant negative serial correlation
11	EQTY	1.981		1.52	1.60	Do not reject H0; No significant positive serial correlation
12	HFCK	1.966		1.52	1.60	Do not reject H0; No significant positive serial correlation
13	КСВ	2.003	1.997	1.52	1.60	Do not reject H0; No significant negative serial correlation
14	NBK	2.04	1.96	1.52	1.60	Do not reject H0; No significant negative serial correlation
15	NICB	2.003	1.997	1.52	1.60	Do not reject H0; No significant negative serial correlation
16	SCBK	1.975		1.52	1.60	Do not reject H0; No significant positive serial correlation
17	COOP	2.07	1.93	1.52	1.60	Do not reject H0; No significant negative serial correlation
18	XPRS	2.040	1.96	1.52	1.60	Do not reject H0; No significant negative serial correlation
19	KQ	2.041	1.959	1.52	1.60	Do not reject H0; No significant negative serial correlation
20	NMG	1.974		1.52	1.60	Do not reject H0; No significant positive serial correlation

Table 45: Conclusion

- 2120 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

21	SGL	2.008	1.992	1.52	1.60	Do not reject H0; No significant negative serial correlation
22	TPSE	2.135	1.865	1.52	1.60	Do not reject H0; No significant negative serial correlation
23	SCAN	1.980		1.52	1.60	Do not reject H0; No significant positive serial correlation
24	ARM	2.005	1.995	1.52	1.60	Do not reject H0; No significant negative serial correlation
25	BAMB	2.031	1.969	1.52	1.60	Do not reject H0; No significant negative serial correlation
26	BERG	1.961		1.52	1.60	Do not reject H0; No significant positive serial correlation
27	CABL	2.119	1.881	1.52	1.60	Do not reject H0; No significant negative serial correlation
28	KEGN	2.125	1.875	1.52	1.60	Do not reject H0; No significant negative serial correlation
29	KENO	2.011	1.989	1.52	1.60	Do not reject H0; No significant negative serial correlation
30	KPLC	2.036	1.964	1.52	1.60	Do not reject H0; No significant negative serial correlation
31	TOTL	1.918		1.52	1.60	Do not reject H0; No significant positive serial correlation
32	JUB	1.993		1.52	1.60	Do not reject H0; No significant positive serial correlation
33	KNRE	1.906		1.52	1.60	Do not reject H0; No significant positive serial correlation
34	PAFR	2.122	1.878	1.52	1.60	Do not reject H0; No significant negative serial correlation
35	ICDC	2.059	1.941	1.52	1.60	Do not reject H0; No significant negative serial correlation
36	OCH	1.971		1.52	1.60	Do not reject H0; No significant positive serial correlation
37	BAT	1.932		1.52	1.60	Do not reject H0; No significant positive serial correlation
38	EABL	2.083	1.917	1.52	1.60	Do not reject H0; No significant negative serial correlation
39	EVRD	2.013	1.987	1.52	1.60	Do not reject H0; No significant negative serial correlation
40	MSC	1.758		1.52	1.60	Do not reject H0; No significant positive serial correlation
41	UNGA	2.006	1.994	1.52	1.60	Do not reject H0; No significant negative serial correlation
42	SCOM	2.167	1.833	1.52	1.60	Do not reject H0; No significant negative serial correlation

Source: Prepared by author (2016)

CONCLUSION

Runs Tests;

According to Runs Test analysis, the following firms did not depict a weak form of EMH: CFC, DTK, HFCK, NICB, COOP, SCAN, BERG, PAFR, ICDC, EABL and SCOM. These companies formed a total of 11 out of 42 companies studied in the NSE (26.2%). All the other remaining stocks of 31companies (73.8%) exhibited a random walk. This therefore shows that majority of the firms listed in the NSE are efficient in the weak form.

Serial (Auto) Correlation tests;

The autocorrelation function analysis (correlogram) showed 10 out of 42 listed firms (23.8%) in the NSE did not show random walk at particular lag periods. These companies include: BAT ($1^{st} 9^{th}$ and 10^{th} lags), CG (10^{th} lag), CFC (2^{nd} lag), MSC (1^{st} lag), FIRE (1^{st} lag),

HFCK (1st lag), ICDC (1st lag), PAFR (1st and 2nd lag), SCBK (1st lag) and SCOM (1st, 2nd, and 6th lag). All the other remaining 32 firms (76.2%) depicted a random walk over the 10 lags used in the study.

Ljung Box Q tests (10 lags) revealed that only 2 companies, that is, BAT and SCOM which formed 4.8% were not efficient in the weak form. This test is based on an aggregation of all the lags used in the ACF analysis. Therefore, this shows that despite the following firms (CG, CFC, MSC, FIRE, HFCK, ICDC, PAFR and SCBK) having serial correlation in particular lags, they were still found to be efficient using the aggregate test of Ljung Box Q for 10 lags.

Durbin Watson (DW) test which measures the serial correlation in the lagged error terms, did not find any significant serial (auto) correlation among the 42 stocks used in this study. This test therefore

- 2121 - The Strategic Journal of Business & Change Management. ISSN 2312-9492 (Online) 2414-8970 (Print). www.strategicjournals.com

concludes that NSE as a whole is efficient in the weak form.

Based on the findings of the two main tests used in this study, there are conflicting results therefore indicating that the different firms in the NSE used in this study responded uniquely to both tests which support the finding of Nisar & Hanif (2012). This means that it not comprehensive to conclude on the efficiency of a stock based on one test. However, this study found that a correlogram provided more detailed results for each particular lag. In conclusion, the findings of this study are consistent with other previous studies (Grzyb, 2007; Nisar & Hanif, 2012; Phiri, 2015) which found evidence of weak form EMH in other stock exchanges. However, it contradicts the findings of Gimba (2007), Sewell (2012), Shiller & Radikoko (2014) and Samitas (2004) who found there is presence of forecasting patterns within the existing stock markets indicating that the share return series does not follow a Random Walk Model.

REFERENCES

- Degutis, A., & Novickytė, L. (2014). The efficient market hypothesis: A critical review of literature and methodolgy. *EKONOMIKA*, 93(2), 7-23.
- Elbarghouthi, S., Qasim, A., & Yassin, M. (2012). The Use of Runs Test in Amman Stock Exchange. *International Business Research*, 5(2), 159-172.
- Freund, W. C., Larrain, M., & Pagano, M. S. (1997). Market efficiency before and after the introduction of electronic trading at the Toronto stock exchange. *Review of Financial Economics*, *6*(1), 29-56.
- Gichaiya, W., & Ishmail, M. (2014). Evaluation of Financial Distress: A Case Study of UCHUMI Supermarket Ltd. International Journal of Financial Economics, 3(3), 178-183.
- Gimba , V. K. (2007). Testing the Weak-form Efficiency Market Hypothesis: Evidence from Nigerial Stock Market. *CBN Journal of Applied Statistics, 3*(1), 117-136.
- Grzyb, J. (2007). Testing Different Forms of Market Efficiency Using the Dow Jones Industrial Average Index. Seminar Paper, Faculty of Business Administration and Economics. Viadrina, Frankfurt: Europa-Universitat.
- Gupta, N., & Gedam, A. (2014). Testing of Efficient Market Hypothesis: a study on Indian Stock Market. *IOSR Journal of Business and Management*, *16*(8), 28-38.
- Kalsie, A., & Kalra, K. J. (2015). An empirical study on efficient market hypothesis if Indian Capital Markets. Journal of Management Research and Analysis, 2(2), 108-114.
- Maronga, E., Nyamosi, D., & Onsando, L. P. (2015). Nairobi Securities Exchange: A review of pricing efficiency after earnings announcement. *International journal of arts and commerce*, 4(4), 172-186.
- Moustafa, M. (2004). Testing the Weak-Form Efficiency of the United Arab Emirates Stock Market. INTERNATIONAL JOURNAL OF BUSINESS, 9(3), 309-325.

- Nayak, S., Misra, B., & Behera, H. (2014). Impact of Data Normalization on Stock Index Forecasting. *International Journal of Computer Information Systems and Industrial Management Applications, 6*, 257-269.
- Nisar, S., & Hanif, M. (2012). Testing Weak Form of Efficient Market Hypothesis: Empirical Evidence from South-Asia. World Applied Sciences Journal, 17(4), 414-427.
- Okpara, C. G. (2010). Stock market prices and the random walk hypothesis:. *Journal of Economics and International Finance*, 2(3), 49-57.
- Oprean, C. (2012). Testing the financial market informational efficiency in emerging states. *Review of Applied Socio-Economic Research*, 4(2), 181-190.
- Pandey, I. M. (2009). *Financial Management* (9th ed.). New Dehli: ViKas Publishing House.
- Patel, N., Radadia, N., & Dhawan, J. (2012). An Empirical Study on Weak-Form of Market Efficiency of Selected Asian Stock Markets. *Journal of Applied Finance & Banking*, *2*(2), 99-148.
- Phiri, A. (2015). Efficient Market Hypothesis in South Africa: Evidence from Linear and Nonlinear Unit Root Tests. *Managing Global Transitions, 13*(4), 369-387.
- Samitas, A. G. (2004). Testing the Efficient Market Hypothesis in the Greek Secondary Market. Zagreb International Review of Economics and Business, 7(1), 23-38.
- Sewell, M. (2012). The Efficient Market Hypothesis: Empirical Evidence. *International Journal of Statistics and Probability*, 1(2), 164-178.
- Shiller, I., & Radikoko, I. (2014). Testing Weak-Form Market Efficiency on the TSX. *The Journal of Applied Business Research*, *30*(3), 647-658.
- Vulić, B. T. (2010). Testing the Efficient Market Hypothesis and its Critics Application on the Montenegrin Stock Exchange. Podgorica: University of Montenegro.